亚博体育官网

亚博体育|即时比分|即时直播

登录    |    注册

您好,欢迎来到中国亚博体育资讯平台!

首页>《中国测试》期刊>本期导读>可移动高效组合式浮子流量计检定装置的研制

可移动高效组合式浮子流量计检定装置的研制

90    2019-08-27

¥0.00

全文售价

作者:李晶晶, 吴晓昱, 桑素丽, 王建民, 周齐, 滕梓洁, 史去非, 李晨

作者单位:北京市计量检测科学研究院, 北京 100029


关键词:计量学;浮子流量计;可移动液体流量尺度装置


摘要:

针对建设专用装置检定浮子流量计,场地占用大且无法满足实流检定的问题,研制一种流量范围为0.006~16 m3/h的可移动浮子流量计检定装置。装置原理为静态质量法,1台150 kg的高准确度电子秤为主尺度器。用专用电动换向器,保障换向同步性。设计基于可编程逻辑控制器(PLC)的控制系统,通过对夹表器夹紧力的实时监测,大幅度降低被测浮子流量计玻璃管在装置过程中损坏的可能性。采取液体流量尺度装置检定规程中的方法对整套装置进行实验及不确定度评定,得到其扩展不确定度为0.25%(k=2)。装置具有方便移动、可拆卸、可快速组合的特点,能够满足准确度等级1.0级及以下浮子流量计实验室或现场校准的需求。


Development of a movable and efficient combined float meter calibration facility
LI Jingjing, WU Xiaoyu, SANG Suli, WANG Jianmin, ZHOU Qi, TENG Zijie, SHI Qufei, LI Chen
Beijing Institute of Metrology, Beijing 100029,China
Abstract: Current calibration facilities for float meters need to build specific facilities, occupy large area, and can’t meet the actual conditions in the field. To address these issues, a movable calibration facility can operate in the flow rate range of 0.006-16m3/h was established in this study. For high-accuracy liquid flowmeter calibration purposes, generally, gravimetrically based facility was in use. High-accuracy electronic scale with 150 kg was utilized as master standard. Electric diverter was employed to confirm the synchronization and avoid the potential issue of traditional diverters, which might not be operated in the field due to lack of gas source. Additionally, PLC- based control system was designed to reduce the damage possibility of glass tube in float meter during the installation by real-time monitoring the clamping force of the clamp. As a result, the preliminary expanded uncertainty (k=2) of this liquid flow standard facility was estimated to be 0.25%. Moreover, this novel float meter calibration facility is capable to move, disassemble, and quick assemble and install, and can be applied for laboratory and field calibration of 1.0 and below accuracy class float meter.
Keywords: metrology;float meter;movable liquid flow calibration facility
2019, 45(8):100-105  收稿日期: 2019-04-26;收到修改稿日期: 2019-05-12
基金项目: 2018年国产质监领域计量科学仪器验证评价与推广(Z181100009518012);北京市计量检测科学研究院青年基金项目(KJ2018-14)
作者简介: 李晶晶(1982-),少女,黑龙江大庆市人,高级工程师,博士后,主要从事流量计量领域技术和方法研究
参考文献
[1] 葛利俊.提高浮子流量计丈量精度的研究[D].天津:天津大学, 2011.
[2] 黄邵峰,陈洁,曹毅杰,等.基于现场浮子流量计组的监控系统设计[J].工业控制计算机, 2016, 29(1):14-15
[3] 岳秋琴,董因涛.金属管浮子流量计智能检测控制系统研制[J].重庆电子工程职业学院学报, 2012, 21(1):159-161
[4] 陈李.浮子流量计检定介质与刻度介质不同时的刻度换算和粘度修正方法[J].计量与测试技术, 2013, 40(6):60-62
[5] 郝松,刘娜,刘尚玉.流体粘度对浮子流量计丈量影响的试验研究[J].轻工尺度与质量, 2017, 3:72-73
[6] 蔡洁,海宁,林峰.静态质量法水流量尺度装置校准流量计不确定度分析的讨论[J].工业计量, 2013, 23(4):60-63
[7] 王杰,李旭.静态质量法油流量尺度装置不确定度分析[J].计量与测试技术, 2016, 43(2):83-87
[8] 孙仁伟.浮子流量计的发展介绍[J].自动化与仪表, 2005, 20(5):29-31
[9] 浮子流量计检定规程:JJG257-2007[S].北京:中国尺度出版社, 2007.
[10] 马龙博,郑建英,赵建亮.液体流量尺度装置中开式换向器丈量误差实验研究[J].自动化仪表, 2015, 36(4):60-67
[11] 液体流量尺度装置检定规程:JJG164-2000[S].北京:中国尺度出版社, 2000.
[12] 李峥.水流量尺度装置不确定度和流量稳定性研究[D].天津:天津大学, 2009.