登录    |    注册

您好,欢迎来到中国江苏快三开奖资讯平台!

首页>《中国测试》期刊>本期导读>γ射线空气比释动能空腔理论计算值准确度的蒙特卡罗研究

γ射线空气比释动能空腔理论计算值准确度的蒙特卡罗研究

101    2019-06-26

¥0.00

全文售价

作者:滕忠斌1,2, 田丽霞1, 宋明哲2, 倪宁2, 张曦2, 魏可新2

作者单位:1. 东华理工大学, 江西 南昌 330013;
2. 中国原子能科学研究院, 北京 102413


关键词:空腔理论;限制的阻止本领比;EGSnrc;电离室


摘要:

当使用基于空腔理论的石墨空腔电离室绝对测量γ射线空气比释动能时,需要考虑空腔体积的大小变化对测量结果准确度的影响。利用EGSnrc程序计算得到10~5 000 cm3的球型石墨空腔电离室的石墨和空气的限制的阻止本领比(L△(E)/ρc,air、入射光子与空腔气体直接作用沉积能量的份额Fair和Spencer-Attix空腔理论修正因子kSA。结果表明对于60Co和137Cs能量的光子,在计算(L△(E)/ρc,air时选择合适的△值可以使kSA的值保持在0.998~1.000之间。此外kSA的大小随空腔体积的增大有逐渐减小的趋势。表明在设计和使用较大体积(≥50 cm3)的石墨空腔电离室时需要考虑合适大小的kSA值,以保证空腔理论计算值和绝对测量结果的准确。


Study of the accuracy of γ-rays air kerma calculated by cavity theroy using Monte-Carlo method
TENG Zhongbin1,2, TIAN Lixia1, SONG Mingzhe2, NI Ning2, ZHANG Xi2, WEI Kexin2
1. East China University of Technology, Nanchang 330013, China;
2. China Institute of Atomic Energy, Beijing 102413, China
Abstract: When people absolutely measure the γ-rays air kerma using a cavity chamber based on cavity theory, it is necessary to consider the impact of the different sizes of the cavity volume on the accuracy of the measurement results. Based on the calculation of EGSnrc code,the restricted stopping-power ratios graphite to air,(L△(E)/ρ)c,air,the fraction of dose caused by photon interacting with cavity gas,Fair,and the Spencer-Attix correction factor, kSA,have been obtained,when the cavity volume changes from 10 cm3 to 5000 cm3.The results show that for photons of 60Co and 137Cs source, selecting the appropriate $\Delta $ value,during the calculation of (L△(E)/ρ)c,air,can keep the kSA between 0.998-1.000.And the kSA gradually decreases with the increase of cavity volume.Thus, to obtain accurate results of cavity theory calculation and absolute measurement, the appropriate value of kSA needs to be considered carefully when designing or using a large volume (≥ 50 cm3) graphite-walled cavity ionization chamber.
Keywords: cavity theory;restricted mass stopping power ratios;EGSnrc;cavity chamber
2019, 45(6):13-18  收稿日期: 2018-09-10;收到修改稿日期: 2018-10-15
基金项目: 国家自然科学基金(11505028);核技术应用教育部工程研究中心开放基金资助项目(HJSJYB2015-12)
作者简介: 滕忠斌(1993-),男,山东聊城市人,硕士研究生,专业方向为核科学与技术
参考文献
[1] γ射线空气比释动能计量器:JJG 2044-2010[S]. 北京:中国标准出版社,2011.
[2] MA C M, NAHUM A E. Bragg-Gray theory and ion chamber dosimetry for photon beams[J]. Physics in Medicine & Biology, 1991, 36(4):413-428
[3] BORG J, KAWRAKOW I, ROGERS D W, et al. Monte Carlo study of correction factors for Spencer-Attix cavity theory at photon energies at or above 100 keV[J]. Medical Physics, 2000, 27(8):1804-1813
[4] RUSSA D J L, ROGERS D W O. Accuracy of Spencer-Attix cavity theory and calculations of fluence correction factors for the air kerma formalism[J]. Medical Physics, 2009, 36(9):4173-4183
[5] COMMITTEE R T. A protocol for the determination of absorbed dose from high-energy photon and electron beams[J]. Medical Physics, 1983, 10(6):741-771
[6] BÜERMANN L, BURNS D T. Air-kerma cavity standards[J]. Metrologia, 2009, 46(2):24
[7] ALLISYROBERTS P J, BURNS D T, KESSLER C. Summary of the BIPM.RI(I)-K1 comparison for air kerma in 60Co gamma radiation[J]. Metrologia, 2007, 44(1A):06006
[8] ALLISYROBERTS P J, KESSLER C, BURNS D T. Summary of the BIPM.RI(I)-K5 comparison for air kerma in 137Cs gamma radiation[J]. Metrologia, 2013, 50(1A):06001
[9] ATTIX F H. Introduction to Radiological Physics and Radiation Dosimetry[M].New Jersey:John Wiley and Sons, 1986.
[10] ROGERS D W O, TREURNIET J. Monte Carlo calculated wall and axial non-uniformity corrections for primary standards of air kerma[R]. Nrcc Report Pirs, 1999.
[11] ICRU. Stopping powers for electrons and positrons[R]. ICRU Report No.37. WashingtonDC:ICRU,1984:15-34.
[12] RUSSA L, DANIEL J. The effect of low-energy electrons on the response of ion chambers to ionizing photon beams[J]. ProQuest Dissertations And Theses, 2009, 71(5):3119
[13] ICRU. Key date for ionizing -radiation dosimetry:measurement stands and applications[R]. ICRU Report No.90. England:Oxford University Press,2016:15-34.
[14] ROGERS D W, KAWRAKOW I. Monte Carlo calculated correction factors for primary standards of air kerma[J]. Medical Physics, 2003, 30(4):521-532
[15] SELTZER S M, JR B P M. Changes in the U.S. primary standards for the air kerma from gamma-ray beams[J]. Journal of Research of the National Institute of Standards & Technology, 2003, 108(5):359-381