亚博体育官网

亚博体育|即时比分|即时直播

登录    |    注册

您好,欢迎来到中国亚博体育资讯平台!

首页>《中国测试》期刊>本期导读>轻型四旋翼无人机声场特性研究

轻型四旋翼无人机声场特性研究

234    2019-05-28

¥0.00

全文售价

作者:曹惠茹1,2, 陈玮1, 成海秀1, 祝文坚1

作者单位:1. 中山大学南方学院, 广东 广州 510970;
2. 广州工程技术职业学院信息工程系, 广东 广州 510075


关键词:四旋翼;无人机;声场特性;声压


摘要:

无人机声场特性直接反映无人机飞行过程中的稳定性和其他相关特性,该文通过构建测试平台对轻型四旋翼无人机在不同电流、距离下的声场进行测试;并对固定飞行高度下的无人机声场频率进行试验。试验结果表明:无人机声压强度与声音的传播距离呈对数关系;随着电流的增加,声压衰减系数逐渐减小;在无人机声场衰减模型中常数项基本坚持不变,且只和环境相关。同时无人机飞行中声场频率集中在10 kHz左右;随着声场传播距离的增大,无人机声压剧烈减少。该研究可为无人机的相关研究与发展提供理论和实践的依据。


Study on acoustic field characteristics of light quadrotor unmanned aerial vehicle
CAO Huiru1,2, CHEN Wei1, CHENG Haixiu1, ZHU Wenjian1
1. Nanfang College of Sun Yat-sen University, Guangzhou 510970, China;
2. Department of Information Engineering, Guangzhou Institute of Technology, Guangzhou 510075, China
Abstract: Acoustic field data directly map stability and other performance of unmanned aerial vehicle (UAV). this paper construct the experiment of acoustic field on UAV with different distance, working current and other parameters,and the sound field frequency of UAV under fixed flight altitude is tested. The experimental results show that the logarithm mathematical model was established between the distance and the intensity of sound. As the current increases, the attenuation coefficient would decrease. In the UAV sound field attenuation model, the constant coefficient is basically unchanged, and is only related to the environment. The frequency of sound field in UAV flight is about 10 kHz. With the propagation distance of sound field increasing, the sound pressure of UAV decreases dramatically.This study can provide theoretical and practical basis for the research and development of UAV.
Keywords: quadrotor;unmanned aerial vehicle;sound field characteristic;sound pressure
2019, 45(5):43-46,53  收稿日期: 2018-04-20;收到修改稿日期: 2018-05-18
基金项目: 广州市科技计划项目(201804010427);广东省水利科技创新项目(2016-18)
作者简介: 曹惠茹(1981-),少女,副教授,硕士,主要研究方向为无线传感器网络、计算机应用与控制、计算机信息处理等方面
参考文献
[1] 张欣. 多旋翼无人机的姿态与导航信息融合算法研究[D]. 长春:中国科学院研究生院(长春光学精密机械与物理研究所), 2015.
[2] 李增彦, 李小民, 刘新海. 便携式无人机地面控制站设计与实现[J]. 中国测试, 2014, 40(1):119-122
[3] 胡春明,郝蒙蒙. 无人机活塞式发动机进排气系统优化[J]. 航空动力学报, 2018, 33(4):1009-1016
[4] 李杰, 齐晓慧, 韩帅涛, 等. 小型四旋翼无人机飞行控制系统设计与实现[J]. 中国测试, 2014, 40(2):90-93
[5] NONAMI K, KENDOUL F, SUZUKI S. Autonomous flying robots:unmanned aerial vehicles and micro aerial vehicles[J]. Springer Publishing Company, Incorporated, 2010:959-963
[6] 聂博文, 马宏绪, 王剑. 微小型四旋翼飞行器的研究现状与关键技术[J]. 电光与控制, 2007, 14(6):113-117
[7] 蒋兆军, 成孝刚, 彭雅琴, 等. 基于深度学习的无人机识别算法研究[J]. 电子技术应用, 2017, 43(7):84-87
[8] MANYAM S G, RATHINAM S, DARBHA S, et al. GPS denied UAV routing with communication constraints[J]. Journal of Intelligent & Robotic Systems, 2016, 84(4):691-703
[9] CAO Y. UAV circumnavigating an unknown target under a GPS-denied environment with range-only measurements[J]. Automatica, 2014, 55(C):150-158
[10] 丘恺彬, 李建良. 无人机识别的音频特征提取方法[J]. 噪声与振动控制, 2018, 38(2):188-192
[11] 程翠. 基于声纹多谐波分析的无人机检测与定位研究[D]. 杭州:浙江大学, 2018.
[12] 杨东海. 基于声音识别的四旋翼无人机探测技术研究与实现[D]. 长沙:湘潭大学, 2017.
[13] 王威, 安腾飞, 欧建平. 无人机被动音频探测和识别技术研究[J]. 声学技术, 2018, 37(1):89-93
[14] CASE E E, ZELNIO A M, RIGLING B D. Low-cost acoustic array for small UAV detection and tracking[C]. IEEE National Aerospace and Electronics Conference. IEEE, 2008:110-113.
[15] YUE X, LIU Y, WANG J, et al. Software defined radio and wireless acoustic networking for amateur drone surveillance[J]. IEEE Communications Magazine, 2018, 56(4):90-97