登录    |    注册

您好,欢迎来到中国江苏快三开奖资讯平台!

首页>《中国测试》期刊>本期导读>振动真空方法对水泥基压电复合材料性能提高表征测试

振动真空方法对水泥基压电复合材料性能提高表征测试

221    2019-04-02

¥0.00

全文售价

作者:丁绍华, 马永力

作者单位:武汉大学土木建筑工程学院, 湖北 武汉 430072


关键词:水泥基压电复合材料;振动真空;压电性能;介电性能;机电耦合系数


摘要:

为改善水泥基压电复合材料的密实度,提高材料性能和耐久性,该文提出一种基于振动真空共同作用的方法,制备水泥基压电复合材料,设置两组对照试验。以普通硅酸盐水泥为基体,以锆钛酸铅压电陶瓷PZT为功能体,用振动真空和纯真空方法结合切割-填充法制备出1-3型、2-2型PZT/水泥基压电复合材料.研究分析振动真空和纯真空下水泥基压电复合材料的压电性、介电性和机电耦合性能的变化规律。结果表明:采用振动真空方法所得到的试件,其压电应变常数d33和相对介电常数εγ比纯真空方法得到的结果相对偏大,而相对应的压电电压常数g33则偏小,压电性能更好。振动真空方法得到的试件,其串联谐振频率fs和并联谐振频率fp较纯真空方法得到的试件要更小,而KpKtQm的值都稍微更大,机电耦合性能更好。


Characterization of performance improvement of cement-based piezoelectric composites by vacuum vibration method
DING Shaohua, MA Yongli
School of Civil Engineering, Wuhan University, Wuhan 430072, China
Abstract: PZT/cement-based piezoelectric composite of type 1-3 and 2-2 were prepared with ordinary portland cement as matrix and lead zirconate titanate PZT as functional materials by vibrating vacuum and pure vacuum combined with cutting-filling method. The variation of piezoelectricity, dielectric properties and electromechanical coupling performance of cement-based piezoelectric composites under vibration vacuum and pure vacuum was studied and analyzed. The results show that the piezoelectric constant d33 and the relative permittivity εγ of the specimen obtained by the vibration vacuum method are relatively larger than those obtained by the pure vacuum method, while the corresponding piezoelectric voltage constants g33 are smaller and the piezoelectric performance is better. The specimen obtained by the vibrating vacuum method has smaller series resonance frequency fs and parallel resonance frequency fp than the specimen obtained by the pure vacuum method, and the values of Kp, Kt and Qm are slightly larger and the electromechanical coupling performance is better.
Keywords: cement-based piezoelectric composites;vibration vacuum;piezoelectric performance;dielectric properties;electromechanical coupling coefficient
2019, 45(3):30-35  收稿日期: 2018-06-05;收到修改稿日期: 2018-07-15
基金项目: 中央高校基本科研专项资金(000003)
作者简介: 丁绍华(1992-),男,江西抚州市人,硕士研究生,专业方向为水泥基压电传感器智能检测和监测
参考文献
[1] LI Z, DONG B. 0-3 cement-based piezoelectric ceramic composites[C]//NDE for Health Monitoring and Diagnostics. International Society for Optics and Photonics, 2003.
[2] 张东, 吴科如, 李宗津. 2-2型水泥基压电机敏复合材料的研制[J]. 压电与声光, 2002, 24(3):217-220
[3] 张东, 吴科如, 李宗津. 水泥基压电机敏复合材料的可行性分析和研究[J]. 建筑材料学报, 2002, 5(2):141-146
[4] QIN L, HUANG S, CHENG X, et al. The application of 1-3 cement-based piezoelectric transducers in active and passive health monitoring for concrete structures[J]. Smart Materials & Structures, 2009, 18(9):095018
[5] 张东, 吴科如, 李宗津. 0-3型水泥基压电机敏复合材料的制备和性能[J]. 硅酸盐学报, 2002, 30(2):161-166
[6] LI Z, DONG Z, WU K. Cement-Based 0-3 Piezoelectric Composites[J]. Journal of the American Ceramic Society, 2010, 85(2):305-313
[7] 廖双双, 鞠超, 张宗振, 等. 不同柱高对1-3-2型压电复合材料性能的影响[J]. 济南大学学报(自然科学版), 2010, 24(3):229-232
[8] 徐东宇. 水泥基压电传感器的制备、性能及其在土木工程领域的应用研究[D]. 济南:山东大学, 2010.
[9] XING F, DONG B, LI Z. The study of pore structure and its influence on material properties of cement-based piezoelectric ceramic composites[J]. Construction & Building Materials, 2009, 23(3):1374-1377
[10] MA H, LI Z. Realistic pore structure of portland cement paste:experimental study and numerical simulation[J]. Computers & Concrete, 2013, 11(4):317-336
[11] MA H, LI Z. Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms[J]. Construction & Building Materials, 2013, 47(10):579-587
[12] LI Z J, HUANG S F, QIN L, et al. An investigation on 1-3 cement based piezoelectric composites[J]. Smart Materials\s&\structures, 2007, 16(4):999
[13] LEE H G, KIM H G. Influence of microstructure on the dielectric and piezoelectric properties of lead zirconate-polymer composites[J]. Journal of the American Ceramic Society, 1989, 72(6):938-942
[14] 黄世峰. 水泥基压电复合材料的制备及其性能研究[D]. 武汉:武汉理工大学, 2005.
[15] Standards Committee of the IEEE Ultrasonics, Ferroelectrics, Frequency Control Society:ANSI/IEEE Std. 176-1987[S]. An American National Standard:IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, 1987.