登录    |    注册

您好,欢迎来到中国江苏快三开奖资讯平台!

首页>《中国测试》期刊>本期导读>一种车辆制动力实时检测方法研究

一种车辆制动力实时检测方法研究

109    2019-04-02

¥0.00

全文售价

作者:高强, 程意, 严鹏飞, 张保成, 闫宏伟

作者单位:中北大学机械工程学院, 山西 太原 030051


关键词:制动力;实时检测;摩擦系数;热力耦合


摘要:

为实现汽车在制动过程中制动力准确地实时检测,该文提出一种变温度变摩擦系数的制动力实时监测方法——温差算法。此算法以摩擦系数与温度的关系为依据,基于制动盘内侧温度和摩擦面温度差值变化规律,通过循环迭代计算出制动过程中的实时摩擦系数,完成对制动器处制动力实时检测,使用Ansys Workbench对制动盘进行热力耦合有限元分析,模拟摩擦制动过程中温度变化情况,并基于温度数据对温差算法系数进行拟合。最后使用Matlab Simulink对温差算法进行仿真,结果表明:当输入动态的温度参数时,可以输出实时制动力数据,并且数据满足制动力变化规律。


Study on a real-time detection method of vehicle braking force
GAO Qiang, CHENG Yi, YAN Pengfei, ZHANG Baocheng, YAN Hongwei
College of Mechanical Engineering, North University of China, Taiyuan 030051, China
Abstract: In order to realize the accurate real-time detection of the vehicle braking force in the braking process, a dynamic real-time monitoring method, temperature difference algorithm, is proposed in this paper. Based on the relationship between the friction coefficient and the temperature, the real-time friction coefficient in the braking process is calculated on the basis of the inner temperature of the brake disc and the difference of the temperature difference between the friction surface. The real-time detection of brake force is realized. The thermal coupling finite element analysis of the brake disc was carried out by Ansys Workbench, and the temperature variation in the friction braking process was simulated, and the temperature difference algorithm coefficient was fitted based on the temperature data. Finally, the algorithm is checked by Matlab Simulink, the results show that the real-time braking force data can be output when the dynamic temperature parameters are input, and the data can meet the slip condition.
Keywords: braking force;real-time detection;friction coefficient;thermo mechanical coupling
2019, 45(3):53-58  收稿日期: 2018-07-18;收到修改稿日期: 2018-09-01
基金项目: 国家自然科学基金资助项目(51275487);山西省重点研发计划社会发展项目(201603D321117)
作者简介: 高强(1975-),男,山西太原市人,副教授,研究方向为机电液系统状态检测和智能控制
参考文献
[1] LE J F H. Method of making brake drums:US 3105292 A[P]. 1963.
[2] 黄万友, 王琪, 于明进, 等. 滚筒轴距可调的反力式制动检验台测控系统开发[J]. 时代汽车, 2016(z1):31-34
[3] 袁岳超. 基于平板式制动检验台的ABS汽车制动力检测分析研究[D]. 长春:吉林大学, 2016..
[4] 李金学, 郭景玉. 汽车制动时轮胎印迹的分析[J]. 汽车运用, 2003(7):34-34
[5] JIANG L, JIANG Y L, LIANG Y U, et al. Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11):2783-2791
[6] 于雅静. 商用车制动防抱死系统气室压力及车轮制动转矩识别研究[D]. 长春:吉林大学, 2017.
[7] 张改. 汽车制动性能测试方法分析与研究[J]. 中国测试, 2010, 36(4):34-37
[8] 姜博文, 王可东. 低成本车载组合导航在GPS失效时的算法设计[J]. 传感技术学报, 2017, 30(3):412-417
[9] POPOV V L, PSAKHIE S G, DMITRIEV A, et al. Quasi-fluid nano-layers at the interface between rubbing bodies:simulations by movable cellular automata[J]. Wear, 2003, 254(9):901-906
[10] BELHOCINE A, BOUCHETARA M. Thermal-mechanical coupled analysis of a brake disk rotor[J]. Journal of Failure Analysis and Prevention, 2013, 49(2):167-176
[11] 冯志明, 蔡安克, 范随长, 等. 温度对蠕铁材料力学性能的影响[C]//2015中国铸造活动周论文集. 2015.
[12] 周俊峰, 王伟, 张晨, 等. 动态摩擦因数对蝶式制动器温度场影响的试验和模拟研究[J]. 机械工程学报, 2016, 52(10):150-157
[13] 汪德成. 盘式制动器热机耦合特性及疲劳寿命预测研究[D]. 上海:上海工程技术大学, 2016.