登录    |    注册

您好,欢迎来到中国江苏快三开奖资讯平台!

首页>《中国测试》期刊>本期导读>变分模态分解在地铁车辆熔断器非短路损坏故障分析

变分模态分解在地铁车辆熔断器非短路损坏故障分析

242    2019-04-02

¥0.00

全文售价

作者:靳行, 林建辉, 邓韬

作者单位:西南交通大学 牵引动力国家重点实验室, 四川 成都 610031


关键词:变分模态分解;瞬时频率;熔断器;故障分析


摘要:

非短路损坏故障不但增加车辆运营经济成本,而且影响运营线路的运营计划。该文针对熔断器非短路故障频发的地铁车辆,基于NI作为检测硬件设计一套故障诊断测试系统,并应用Dasylab软件搭建系统的采集部分,通过对列车运营时段的测试数据进行整体统计分析,应用VMD剔除趋势项,对偏离均值的异常数据应用VMD分析,最终找到熔断器非短路故障频发原因。结果表明,该文所设计的故障诊断测试系统与分析方法是有效并可靠的,可为工程实用提供参考。


Damage fault analysis for non-short-circuit of subway vehicle fuse based on VMD method
JIN Hang, LIN Jianhui, DENG Tao
State Key Laboatory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
Abstract: Non-short-circuit damage usually causes the addition of economic cost during vehicles operating, still, this affects the operating line plan or strategy. In this paper, a set of fault diagnosis test system is designed based on NI instruments as hardware-detection for metro-vehicles with frequent non-short-circuit faults in fuses. The data collection of the system have been built by Dasylab software. Under the overall statistical analysis of the test data during train operation, the trend items are eliminated by VMD, VMD analysis is applied to the anomaly data which has the deviated mean values, to work out the causes of the frequent non-short-circuit faults of the fuse. The results show that the fault diagnosis test system and the designed analysis method in this paper is effective and reliable, which can provide reference for practical engineering.
Keywords: vibrational mode decomposition;instantaneous frequency;fuse;fault analysis
2019, 45(3):146-150  收稿日期: 2017-05-23;收到修改稿日期: 2017-07-05
基金项目:
作者简介: 靳行(1986-),男,山东青岛市人,博士,研究方向为故障诊断及可靠性
参考文献
[1] 汪永明, 程卫群, 靳行. 阿根廷布市萨缅托线(Sarmiento)电动车组受流器熔断器频繁烧损原因分析及对策[J]. 现代国企研究, 2015(02):150-151
[2] 王丹, 韩振兴, 方晓. 广州地铁4号线列车接触轨受流主电路熔断器故障原因分析[J]. 城市轨道交通研究研究, 2013, 16(10):124-126
[3] 尹洪权. 地铁车辆受流器与第三接触轨稳定性研究[D]. 成都:西南交通大学, 2016.
[4] 李颖,华才倩,张维维. 地铁车辆受流器的设计研究[J]. 世界轨道交通, 2016(12):58-59
[5] 奥本海姆A. V. 离散时间信号处理[M]. 刘树棠, 译. 2版. 西安:西安交通大学出版社, 2001:145-155
[6] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 1998, 454(1971):903-995
[7] DRAGOMIRETSKIY K, ZOSSO D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544
[8] MARKERT R, WANG Y. Filter bank property of variational mode decomposition and its applications[J]. Signal Processing, 2016(120):509-521
[9] 高艳丰, 朱永利, 闫红艳, 等. 基于VMD和TEO的高压输电线路雷击故障测距研究[J]. 电工技术学报, 2016(1):24-33
[10] 张亚超, 刘开培, 秦亮. 基于VMD-SE和机器学习算法的短期风电功率多层级综合预测模型[J]. 电网技术, 2016(5):1334-1340
[11] 武英杰, 甄成刚, 刘长良. 变分模态分解在风电机组故障诊断中的应用[J]. 机械传动, 2015(10):129-132
[12] 石敏, 李影, 王冰, 等. 基于变分模态分解的齿轮箱故障诊断[J]. 电力科学与工程, 2016(1):23-26
[13] 刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015(13):3358-3365
[14] MANKINS J C. Technology reaniness levels[M]. White Paper, 1995.
[15] 轨道交通地面装置直流开关设备:GB/T 25890-2010[S].北京:中国质检出版社, 2010.
[16] 直流大电流测量过程控制技术规范:JJF1087-2002[S].北京:中国计量出版社, 2002.